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Note 

Numerical Inversion of Mellin and Two-Sided Laplace Transforms 

The Mellin transform has many uses in physics and applied mathematics, in 
particular, in the solution of problems of elasticity [I, 21, and in the theory of cosmic 
ray showers [3-61. Recently Tsamasphyros and Theocaris [7] have presented a method 
for numerical inversion of Mellin transforms by expanding the inverse transforms in 
terms of Laguerre polynomials which was extended by Tsamasphyros and Chrysakis 
[8]. In this note we use the identity 

F(s) = 6 m x8--if(x) dx = 
f 

e-tsf(e-t) dt 
--o) 

(1) 

to express the Mellin transform in terms of a two-sided Laplace transform. We then 
show that a slight generalization of an algorithm developed by Dubner and Abate [9] 
and extended by Crump [lo] for numerical inversion of the one-sided Laplace 
transform, can be applied successfully to numerical inversion of the two-sided Laplace 
transform. 

A derivation parallel to that given by Dubner and Abate suffices to show that f(e-“) 
can be expressed in the exact form 

f(e-“1 = L(e-“1 + E+ + E- (2) 

for -T < t < T, where 

f,(e-“) = g k(u) + 2 vt [Re F (a + %) cos (q) 

- Im F (a + +) sin (?)I] 

is the approximation actually used, and E, and E_ are error terms given by 

E, = 5 e--fnarf(e--BnT--t), 
la=1 

(4) 

E- = .f e2narf(e2nT--t)* 
n=1 

The parameter u is arbitrary, restricted only by the fact that the Mellin transform 
converges in a strip 01 < Re s < p [ll], where a and ,!I can equal -cc or + co, 
respectively. 
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It is obvious that the choice of a and T both influence the accuracy and rate of 
convergence of Eq. (3). Several considerations are needed in the choice of these 
parameters. If t is held fixed then as T increases the rate of convergence of the sum 
in Eq. (3) decreases. This suggests choosing T as small as possible. If T is chosen too 
small then the errors in Eq. (4) increase. A good rule of thumb for choosing T is to 
let it be no more than twice the maximum value oft, i.e., choose T so that 1 t/T 1 < +. 
Sometimes convergence is too show even with this choice of T. It then may be advan- 
tageous to set t = T and to use an acceleration method, of which the epsilon 
algorithm is a good example [IO], although not the only possibility [12, 131. When the 
strip of convergence of F(s) has a finite width (01, ,!?) then a study of several examples 
suggests that a should be chosen to be 

We have used the inversion formula in Eq. (4) on several examples, some of them 
also considered by Tsamasphyros and Theocaris. These are 

1. fl(x) = exp(-2x), &F,(s) = 22”r(s), 

2. fi(x) = (1 - x)/(1 - x20), F,(s) = 77 sin (%)/[20 sin (s) sin ( “‘“& I)-)], 

3. f&) = cos(3x) exp(-4x), I;,(s) = 55”r(s) cos(s . tan-r($)). 

A tabulation of the relative errors, the number of terms required, and the values of T 
chosen in the series in Eq. (3) is given in Table I.’ The function F.(s) required a large 
number of terms for the inversion with T = 10, as shown, but convergence with 
approximately one-fourth of the number of terms was achieved by using T = 2.5, 
with considerable degradation in accuracy at x = 0.1 and with some degradation 
in accuracy for x > 6. We have also inverted the transform pair f*(x) = 
xZJ[l - H(x - l)], F4(s) = I/(s + 2.9, where H(x) is the Heaviside function, 
finding some difficulty with Gibbs’ phenomenon at x = 1, as in [7], while the accuracy 
elsewhere is similar to the accuracy in Table 1. 

We conclude that the present technique is stable over a useable range in x and is 
simple to program, provided that F(s) can be evaluated for complex s. Furthermore, 
it does not require high-order differences as in the Laguerre polynomail technique 
suggested by Tsamasphyros and Theocaris, although their method has the advantage 
of requiring R’(s) for real s only. There are indications that there may be some 
advantages in accuracy in using the present method. As an example we have compared 
the relative errors obtained using the best method reported by Tsamasphyros and 
Theocaris [7] with those in Table I for the inversion of F.(s). The relative errors by 
the Laguerre inversion technique are: at x = 0.1, R = 2.0 x 1O-3 (compared with 
-7 x lO-s from Table I), at x = 0.5, R = 9 x 1O-7 (2 x 1O-8), at x = 1.0, 

1 Note that the errors in [7] are absolute errors, while our errors are relative errors, defined by 
Ri = UW,,r. - N&,,,&f;(x),,,t , where f;(xhppr. is the result of using Eq. (3) with Ni terms. 
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R = -4 x low4 (3 x 10es), at x = 3.0, R = 3 x 106 (1 x 10-8). A comparison of 
relative errors for F,(S) shows that the relative errors of the Laguerre inversion 
technique are: At x = 0.1, R = -2 x lo-’ (1 x lo-*), at x = 0.5, R = 7 x lo-” 
(4 X lo-% at x = 1.0, R = 2 x 1O-6 (-5 x 1O-s), at x = 3.0, R = 2 x 1O-5 
(3 x IO-?, at x = 3.0, R = 2 x 1O-5 (3 x 10-6), at x = 5.0, R = 2 x IO-4 

TABLE 1 

Relative Errors, Ri , and Number of Terms, Ni , for the Numerical Inversion of F,(S), i = 1, 2, 3.0 

a=2 a = 10 a=2 
-. 

x RI I\r, & NZ & N, 

0.1 C-8) 101 

0.2 3(-9) 98 

0.3 X-9) 98 

0.4 5(-9) 100 

0.5 4(-9) 94 

0.6 6(-9) 99 

0.7 5.(-9) 90 

0.8 3(-9) 95 

0.9 -7(-9) 91 

1.0 -4(-9) 95 

2.0 l(-9) 99 

3.0 U-8) 100 

4.0 4(-8) 110 

5.0 l(--7) 117 

6.0 3(-7) 121 

7.0 -2(-7) 120 

8.0 -9(-6) 143 

9.0 --8(-S) 149 

10.0 -6(-4) 150 

-7(-8) 394 

3(-9) 321 
-7(-S) 254 

-1(-g) 246 

2(---8) 224 

5(-9) 224 
-l(-7) 182 
-6(-9) 198 

2(-9) 206 

3(-9) 206 
-4(--8) 211 

I(-4 252 

l(4) 272 

2(-9) 309 

7(-9) 311 
-2(-9) 333 

3(-9) 345 

2(-9) 354 

l(-8) 86 

--1(-S) 86 
-7(-9) 87 

l(-9) 81 

4(-8) 93 

-2(-8) 82 

-l(-8) 83 

-8(-9) 84 
-8(-9) 84 

-5(-9) 83 
-2(-7) 19 

3(-6) 98 

3(-5) 114 
-8(-4) 127 

1(-l) 136 

-7(O) 157 

= Tl = 20, Tz = T3 = 10. 

(-8 x 10-3, at x = 7.0, R = 6 (-7). It is not profitable to make a more detailed 
comparison without taking into account the relative running times of the respective 
inversions. 

Note. All of the calculations were run in double precision on an IBM 360195 
computer and checked for accuracy on an Amdahl470 V/6 computer. 
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